
NeuroneLoader Documentation
Release 1.0

Felix Heilmeyer

Sep 09, 2021

Concepts

1 Installation 3

2 Quick start 5

3 Contributing 7

4 API 13

5 Indices and tables 25

Python Module Index 27

Index 29

i

ii

NeuroneLoader Documentation, Release 1.0

NeuroneLoader is a python module for loading neurophysiological data recorded with Bittium NeurOne (formerly
MegaEMG). It therefore allows using the data in pure python processing workflows using the python scientifc software
stack (e.g. numpy) without the need of prior conversion using other (proprietary) software (e.g. MATLAB). It can
also export it to container objects used by the popular python-mne framework.

Props to Andreas Henelius at Finnish Institute of Occupational Health for figuring out how to read the NeurOne binary
format in pure python as part of his export2hdf project.

• Installation

• Quick start

• Documentation

Concepts 1

https://github.com/heilerich/neurone_loader/actions/workflows/test.yaml
https://coveralls.io/github/heilerich/neurone_loader?branch=master
https://neurone-loader.readthedocs.io/en/latest/?badge=latest
https://github.com/heilerich/neurone_loader/blob/master/LICENSE
https://pypi.org/project/neurone-loader/
https://pypi.org/project/neurone-loader/
http://joss.theoj.org/papers/c71df4f24b732eabc11b3195a9a8c94d
https://www.numpy.org/
https://mne-tools.github.io/stable/index.html
https://github.com/bwrc/export2hdf5
https://neurone-loader.readthedocs.io/en/latest/

NeuroneLoader Documentation, Release 1.0

2 Concepts

CHAPTER 1

Installation

pip install neurone_loader

If you want to export to python-mne you must also install MNE and all it’s dependencies.

pip install mne

3

https://mne-tools.github.io/stable/index.html

NeuroneLoader Documentation, Release 1.0

4 Chapter 1. Installation

CHAPTER 2

Quick start

>>> from neurone_loader import Recording
>>> rec = Recording(path_to_recording_folder)
>>> rec.event_codes
array([0, 1, 12, 13, 99, 128], dtype=int32)

Please note that because raw EEG recordings can be quite large this package is very memory aware. Most data will
be loaded from disk lazily, i.e. the moment you’re actually accessing it, and redundant data will be removed from
memory as soon as it has been copied - unless you specify otherwise. Be advised that working with big recordings
might still require a lot of memory.

I recommend looking at the docstrings before executing anything and maybe having a look at Concepts section in the
Documentation before you start working with this package.

5

https://neurone-loader.readthedocs.io/en/latest/

NeuroneLoader Documentation, Release 1.0

6 Chapter 2. Quick start

CHAPTER 3

Contributing

If you encounter any problem feel free to open a issue on GitHub. If you found a bug and want to supply a fix or if
you want to contribute a new feature open a pull request. Just make sure that your code is not breaking any tests and
you also supply tests for your code.

3.1 Testing

To run the tests you must first get the test data and then you can run the test with the following commands. Please run
them in the repository directory, not in the test subdirectory.

To get the test data (~2.8GB) you need to install wget. Then you can download the data by running

bash test/get_test_data.sh

Then you can run the tests with

python -m unittest discover -s test -t .

3.1.1 Containers and data structure

NeurOne recordings consist of three structures:

1. A recording containing (multiple)

2. sessions containing (multiple)

3. phases containing the actual data

Accordingly neurone_loader provides three containers representing these structures.

[2]: from neurone_loader import Recording, Session, Phase

7

https://github.com/heilerich/neurone_loader/issues
https://github.com/heilerich/neurone_loader/pulls
https://www.gnu.org/software/wget/

NeuroneLoader Documentation, Release 1.0

In each of these you can access the data and metadata like sampling_rate or channels and all of them support
the features described in Lazy loading.

Session and Recording technically don’t hold data themselves. On the other hand one usually wants to work with
the whole recording or at least a whole session of a recording. Therefore accessing the .data or any other attribute
of Session or Recording will concatenate the data for you. Be aware that in order to save memory, accessing the
.data attribute of a superseeding object will replace the .data attribute of the included containers with a view on
the concatenated data. So if you manipulate any one of them you will also manipulate the other.

[3]: rec = Recording(test_data_path)
session0 = rec.sessions[0]
sum_of_samples_of_phases_in_session0 = sum([p.n_samples for p in session0.phases])
print('\n')
print(f'session0.n_samples == sum_of_samples_of_phases_in_session0 is {session0.n_
→˓samples == sum_of_samples_of_phases_in_session0}')

(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples

session0.n_samples == sum_of_samples_of_phases_in_session0 is True

For a detailed description refer to the API documentation of the respective objects

3.1.2 Lazy loading

Because raw EEG recordings can be quite large this package is very aware of memory restrictions and possible bottle-
necks due to long loading times from disk.

Therefore most actions that require loading data from disk into memory are executed lazily, meaning:

1. the data is loaded from disk when you access it for the first time

2. the data remains in memory and can be accessed very fast subsequently

To make working with the data more comfortable, the creation of containers and the loading of metadata on the other
hand happens instantly.

[2]: from neurone_loader import Recording

The following examples use the Recording container, but all of the features shown below also work with Session
and Phase!

[3]: # fast: only relevant metadata is loaded from disk
%time rec = Recording(test_data_path)

CPU times: user 15.5 ms, sys: 0 ns, total: 15.5 ms
Wall time: 14.7 ms

[4]: %%time
fast: metadata is already in memory
print(f'Sessions: {len(rec.sessions)}')
print(f'Sampling rate: {rec.sampling_rate}Hz')

8 Chapter 3. Contributing

/concepts/lazy_loading.html
/_autosummary/neurone_loader.loader.html

NeuroneLoader Documentation, Release 1.0

Sessions: 2
Sampling rate: 5000Hz
CPU times: user 293 µs, sys: 0 ns, total: 293 µs
Wall time: 206 µs

[5]: %%time
this is slow: the session data needs to be retrieved from disk first
print(f'Session 1 shape: {rec.sessions[0].data.shape}')

(Lazy) loading Session.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
Session 1 shape: (2504369, 138)
CPU times: user 9.7 s, sys: 2.73 s, total: 12.4 s
Wall time: 4.05 s

[6]: %%time
this will be faster because the data is already in memory
print(f'Session 1 shape again: {rec.sessions[0].data.shape}')

Session 1 shape again: (2504369, 138)
CPU times: user 2.03 ms, sys: 528 µs, total: 2.55 ms
Wall time: 162 µs

As you can see above the container object can be contructed and used very memory and time efficient. Reading the
actual session data, which can take a long time and may consume a lot of memory, is only happening when the data is
actually needed. On subsequent calls the already loaded data is retrieved from memory which is much faster.

To save memory the data can be cleared from memory using the .clear_data() function.

[7]: rec.clear_data()

Preloading

In some cases you may want to load all of the data from disk at once. There are two ways to achieve this.

1. Invoke the loading of all (not yet loaded) data by calling .preload()

2. Load all the data on initialization by setting the argument preload=True

[8]: #Reload all the data cleared in [7]
rec.preload()

Preloading property data of <neurone_loader.loader.Recording object at 0x7f905d013898>
(Lazy) loading Recording.data
(Lazy) loading Session.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Session.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data

(continues on next page)

3.1. Testing 9

NeuroneLoader Documentation, Release 1.0

(continued from previous page)

(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels

[9]: # Load all of the data on initialization
not_so_lazy_rec = Recording(test_data_path, preload=True)

Preloading property data of <neurone_loader.loader.Recording object at 0x7f9063412ef0>
(Lazy) loading Recording.data
(Lazy) loading Session.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Session.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.events
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.n_channels

(continues on next page)

10 Chapter 3. Contributing

NeuroneLoader Documentation, Release 1.0

(continued from previous page)

(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels
(Lazy) loading Phase.n_channels

3.1.3 Exporting

All three containers Recording, Session and Phase implement the ability to export the data (including events)
to a mne.io.RawArray. To do this simply call the .to_mne() function of any container. Be aware that this process
involves copying the data in memory, so it might require (at least momentary) up to double the size of the data in
memory space.

[2]: from neurone_loader import Recording

[3]: rec = Recording(test_data_path)
session0 = rec.sessions[0]

[4]: try:
cnt = session0.to_mne()

except AssertionError as e:
print(f'Error: {e}')

(Lazy) loading Phase.events
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.events
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.events
(Lazy) loading Phase.n_samples
(Lazy) loading Phase.events
(Lazy) loading Phase.n_samples
(Lazy) loading Session.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
(Lazy) loading Phase.data
Error: events with event code 0 are not supported by MNE, use the substitute_zero_
→˓events_with parameter of this method to substitute with an alternative code

The way MNE represents events in a stimulation channel prevents it from using events with the event code 0. In order
to successfully convert you must either

• manipulate the .events data of the container to remove or substitute the events with Code == 0

• or use the substitute_zero_events_with argument to provide a alternative number for automatic sub-
titution

Make sure though that the alternative event code you are using is not already present in the data!

[5]: alt_code = 10
assert alt_code not in session0.event_codes
cnt = session0.to_mne(substitute_zero_events_with=alt_code)

3.1. Testing 11

/_autosummary/neurone_loader.mne_export.html#neurone_loader.mne_export.MneExportable.to_mne

NeuroneLoader Documentation, Release 1.0

Creating RawArray with float64 data, n_channels=138, n_times=2504369
Range : 0 ... 2504368 = 0.000 ... 500.874 secs

Ready.

For more details refer to the API documentation of .to_mne()

12 Chapter 3. Contributing

/_autosummary/neurone_loader.mne_export.html#neurone_loader.mne_export.MneExportable.to_mne

CHAPTER 4

API

neurone_loader.loader Provides classes to load, represent and export data
recorded with the Bittium NeurOne device.

neurone_loader.mne_export Provides the metaclass MneExportable that allows sub-
classes implementing all the metaclass’s properties to be
converted to a mne.io.RawArray.

neurone_loader.neurone Contains functions for reading data recorded with a Bit-
tium NeurOne device.

neurone_loader.lazy Provides the Lazy decorator to construct properties that
are evaluated only once and the preloadable decorator
to enable optional preloading of all lazy properties on
initialization.

4.1 neurone_loader.loader

4.1.1 Classes

neurone_loader.loader.BaseContainer() A metaclass that provides properties for accessing data
shared between all subclasses.

neurone_loader.loader.Phase(*args,
**kwargs)

Represents one recording phase of one NeurOne session
in one NeurOne Recording

neurone_loader.loader.Recording(*args,
**kwargs)

Represents one NeurOne Recording and contains all of
the recording’s sessions

neurone_loader.loader.Session(*args,
**kwargs)

Represents one session in one NeurOne Recording and
contains all of the session’s phases

Provides classes to load, represent and export data recorded with the Bittium NeurOne device.

class neurone_loader.loader.BaseContainer
A metaclass that provides properties for accessing data shared between all subclasses. I cannot be used itself as

13

NeuroneLoader Documentation, Release 1.0

it is not implementing all required methods of its abstract superclass.

channels

Note: This property is a lazy property. For details see lazy.Lazy

Returns ordered list of all channel names, read from the session protocol

Return type list[str]

drop_channels(channels_to_drop)
Remove specified channels from loaded data. Dropped channels will be remembered and when data is
cleared from memory and reloaded from disk the channels will get removed again. To get them back
create a new object of this type to reload from disk.

Parameters channels_to_drop (list[str]) – names of channels to drop

sampling_rate

Returns the sampling rate, read from the session protocol

Return type int

class neurone_loader.loader.Phase(*args, **kwargs)
Represents one recording phase of one NeurOne session in one NeurOne Recording

Parameters

• path (str) – path to the recording session folder

• phase (dict) – phase object from a session protocol

clear_data()
Remove loaded data from memory

data

Note: This property is a lazy property. For details see lazy.Lazy

Returns recorded data with shape (samples, channels) in µV

Return type numpy.ndarray

drop_channels(channels_to_drop)
Remove specified channels from loaded data. Dropped channels will be remembered and when data is
cleared from memory and reloaded from disk the channels will get removed again. To get them back
create a new object of this type to reload from disk.

Parameters channels_to_drop (list[str]) – names of channels to drop

event_codes

Returns all event codes used in the data as int32 in an numpy.ndarray

Return type numpy.ndarray

events

14 Chapter 4. API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

NeuroneLoader Documentation, Release 1.0

Note: This property is a lazy property. For details see lazy.Lazy

Returns recorded events with Revision, Type, SourcePort, ChannelNumber, Code, StartSam-
pleIndex, StopSampleIndex, DescriptionLength, DescriptionOffset, DataLength, DataOffset,
StartTime, StopTime

Return type pandas.DataFrame

n_channels

Returns the number of channels, read from the session protocol

Return type int

n_samples

Returns the number of channels, inferred from the binary recording’s file size

Return type int

preload()
Use this function to call all properties constructed with lazy.Lazy . It can also be used to reload all lazy
properties without deleting them first.

Example

>>> @preloadable
>>> class Test:
>>> @Lazy
>>> def lazy_attribute(self):
>>> print('lazy function called')
>>> return 'lazy return'
>>>
>>> test_object = Test(preload=False) # The lazy property is not evaluated on
→˓initialization
>>> test_object.preload()
lazy function called
>>> print(test_object.lazy_attribute) # The stored attribute is returned
lazy return
>>> test_object.preload() # All properties are reloaded even though already
→˓stored
lazy function called

class neurone_loader.loader.Recording(*args, **kwargs)
Represents one NeurOne Recording and contains all of the recording’s sessions

Parameters path (str) – path to the recording recording folder

channels
Returns the channels used in all sessions and makes sure they’re equal

Returns ordered list of all channel names, read from the session protocols

Return type list[str]

clear_data()
Remove loaded data in all phases of all sessions from memory

data

4.1. neurone_loader.loader 15

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

NeuroneLoader Documentation, Release 1.0

Note: This property is a lazy property. For details see lazy.Lazy

Returns concatenated data of all phases of all sessions with shape (samples, channels) in µV

Return type numpy.ndarray

Warning: Calling this replaces the data attribute of the contained phases and sessions with a view on
the concatenated data to save memory. Keep this in mind when manipulating the contained sessions or
phases.

drop_channels(channels_to_drop)
Remove specified channels from loaded data. Dropped channels will be remembered and when data is
cleared from memory and reloaded from disk the channels will get removed again. To get them back
create a new object of this type to reload from disk.

Parameters channels_to_drop (list[str]) – names of channels to drop

event_codes

Returns all event codes used in the data as int32 in an numpy.ndarray

Return type numpy.ndarray

events

Returns concatenated events of all phases of all sessions with Revision, Type, SourcePort,
ChannelNumber, Code, StartSampleIndex, StopSampleIndex, DescriptionLength, Descrip-
tionOffset, DataLength, DataOffset, StartTime, StopTime

Return type pandas.DataFrame

n_channels
Returns the number of channels used in all phases and makes sure they’re equal

Returns the number of channels, read from the session protocol

Return type int

n_samples

Returns sum of the number of samples, inferred from the binary recording’s file size, of all
phases of all sessions

Return type int

preload()
Use this function to call all properties constructed with lazy.Lazy . It can also be used to reload all lazy
properties without deleting them first.

Example

>>> @preloadable
>>> class Test:
>>> @Lazy
>>> def lazy_attribute(self):
>>> print('lazy function called')
>>> return 'lazy return'
>>>

(continues on next page)

16 Chapter 4. API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NeuroneLoader Documentation, Release 1.0

(continued from previous page)

>>> test_object = Test(preload=False) # The lazy property is not evaluated on
→˓initialization
>>> test_object.preload()
lazy function called
>>> print(test_object.lazy_attribute) # The stored attribute is returned
lazy return
>>> test_object.preload() # All properties are reloaded even though already
→˓stored
lazy function called

sampling_rate
Returns the sampling rate used in all sessions and makes sure they’re all equal

Returns the sampling rate, read from the session protocols

Return type int

class neurone_loader.loader.Session(*args, **kwargs)
Represents one session in one NeurOne Recording and contains all of the session’s phases

Parameters path (str) – path to the recording session folder

clear_data()
Remove loaded data in all phases from memory

data

Note: This property is a lazy property. For details see lazy.Lazy

Warning: Calling this replaces the data attribute of the contained phases with a view on the concate-
nated data to save memory. Keep this in mind when manipulating the contained sessions.

Returns concatenated data of all phases with shape (samples, channels) in µV

Return type numpy.ndarray

drop_channels(channels_to_drop)
Remove specified channels from loaded data. Dropped channels will be remembered and when data is
cleared from memory and reloaded from disk the channels will get removed again. To get them back
create a new object of this type to reload from disk.

Parameters channels_to_drop (list[str]) – names of channels to drop

event_codes

Returns all event codes used in the data as int32 in an numpy.ndarray

Return type numpy.ndarray

events

Returns concatenated events of all phases with Revision, Type, SourcePort, ChannelNumber,
Code, StartSampleIndex, StopSampleIndex, DescriptionLength, DescriptionOffset, DataL-
ength, DataOffset, StartTime, StopTime

Return type pandas.DataFrame

4.1. neurone_loader.loader 17

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

NeuroneLoader Documentation, Release 1.0

n_channels
Returns the number of channels used in all phases and makes sure they’re equal

Returns the number of channels, read from the session protocol

Return type int

n_samples

Returns sum of the number of samples, inferred from the binary recording’s file size, of all
phases

Return type int

preload()
Use this function to call all properties constructed with lazy.Lazy . It can also be used to reload all lazy
properties without deleting them first.

Example

>>> @preloadable
>>> class Test:
>>> @Lazy
>>> def lazy_attribute(self):
>>> print('lazy function called')
>>> return 'lazy return'
>>>
>>> test_object = Test(preload=False) # The lazy property is not evaluated on
→˓initialization
>>> test_object.preload()
lazy function called
>>> print(test_object.lazy_attribute) # The stored attribute is returned
lazy return
>>> test_object.preload() # All properties are reloaded even though already
→˓stored
lazy function called

4.2 neurone_loader.mne_export

4.2.1 Classes

neurone_loader.mne_export.
MneExportable

A metaclass that provides a function allowing objects
that expose data, events, channels and sampling_rate
properties to be converted to an mne.io.RawArray.

4.2.2 Exceptions

neurone_loader.mne_export.
UnknownChannelException

Raised if data contains a channel name that is neither in
a list of well-known channels nor in an (optional) list of
user supplied channel name to channel type mappings.

Provides the metaclass MneExportable that allows subclasses implementing all the metaclass’s properties to be con-
verted to a mne.io.RawArray.

class neurone_loader.mne_export.MneExportable

18 Chapter 4. API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NeuroneLoader Documentation, Release 1.0

A metaclass that provides a function allowing objects that expose data, events, channels and sampling_rate
properties to be converted to an mne.io.RawArray.

channels
Abstract Property

Returns should contain the names of channels, matching the sequence used in the data property

Return type list[str]

clear_data()
Abstract Method

Should delete loaded data from memory

data
Abstract Property

Returns should contain data in (n_samples, n_channels) shape

Return type numpy.ndarray

events
Abstract Property

Returns should contain the events as a DataFrame, required fields are StartSampleIndex, Stop-
SampleIndex and Code. Additional fields are ignored.

Return type pandas.DataFrame

sampling_rate
Abstract Property

Returns should contain the used sampling rate

Return type int

to_mne(substitute_zero_events_with=None, copy=False, channel_type_mappings=None)
Convert loaded data to a mne.io.RawArray

Parameters

• substitute_zero_events_with (None or int) – None. events with code = 0
are not supported by MNE, if this parameter is set, the event code 0 will be substituted
with this parameter

• copy (bool) – False. If False (default), the original data will be removed from memory
to save space while creating the mne.io.RawArray. If the data is needed again it must be
reloaded from disk

• channel_type_mappings (None or dict) – Optional. You can provide a dictio-
nary of channel name to type mappings. If the data contains any channel not in the list of
well-known channel names and not in this mapping the conversion will raise Unknown-
ChannelException. You can choose to map any unknown channel to one specific type
e.g. {‘#unknown’: ‘eeg’}. For a list of available types see the documentation of mne.
pick_types(). This setting takes precedence over the built-in list of common channel
names.

Returns the converted data

Return type mne.io.RawArray

Raises

• ImportError – if the mne package is not installed

4.2. neurone_loader.mne_export 19

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://mne.tools/stable/generated/mne.pick_types.html#mne.pick_types
https://mne.tools/stable/generated/mne.pick_types.html#mne.pick_types
https://mne.tools/stable/generated/mne.io.RawArray.html#mne.io.RawArray
https://docs.python.org/3/library/exceptions.html#ImportError

NeuroneLoader Documentation, Release 1.0

• UnknownChannelException – if a unknown channel name is encountered (see chan-
nel_type_mappings parameter)

exception neurone_loader.mne_export.UnknownChannelException
Raised if data contains a channel name that is neither in a list of well-known channels nor in an (optional) list
of user supplied channel name to channel type mappings.

4.3 neurone_loader.neurone

4.3.1 Functions

neurone_loader.neurone.
get_n1_event_format()

Define the format for the events in a neurone recording.

neurone_loader.neurone.
read_neurone_data(fpath)

Read the NeurOne signal data from a binary file.

neurone_loader.neurone.
read_neurone_data_info(fpath)

Read the sample and channel count from a NeurOne sig-
nal binary file.

neurone_loader.neurone.
read_neurone_events(fpath)

Read the NeurOne events from a binary file.

neurone_loader.neurone.
read_neurone_protocol(fpath)

Read the measurement protocol from an XML file.

Contains functions for reading data recorded with a Bittium NeurOne device. This module currently supports reading
of data and events.

neurone_loader.neurone.get_n1_event_format()
Define the format for the events in a neurone recording.

Arguments: None.

Returns:

• A Struct (from the construct library) describing the event format.

neurone_loader.neurone.read_neurone_data(fpath, session_phase=1, protocol=None)
Read the NeurOne signal data from a binary file.

Arguments:

• fpath: the path to the directory holding the NeurOne measurement (i.e., the directory Proto-
col.xml and Session.xml files.

• session_phase: The phase of the measurement. Currently only reading of the first phase (1) is sup-
ported.

• protocol: The dictionary obtained using the function read_neurone_protocol. This argument is op-
tional and if not given, the protocol is automatically read.

Returns:

• A numpy ndarray with the data, where each columns stores the data for one channel.

neurone_loader.neurone.read_neurone_data_info(fpath, session_phase=1, protocol=None)
Read the sample and channel count from a NeurOne signal binary file.

Arguments:

20 Chapter 4. API

NeuroneLoader Documentation, Release 1.0

• fpath: the path to the directory holding the NeurOne measurement (i.e., the directory Proto-
col.xml and Session.xml files.

• session_phase: The phase of the measurement. Currently only reading of the first phase (1) is sup-
ported.

• protocol: The dictionary obtained using the function read_neurone_protocol. This argument is op-
tional and if not given, the protocol is automatically read.

Returns: Returns: - a named tuple containing (i) the number of channels

and (ii) the number of samples in the recording.

(n_samples, n_channels)

neurone_loader.neurone.read_neurone_events(fpath, session_phase=1, sam-
pling_rate=None)

Read the NeurOne events from a binary file.

Arguments:

• fpath: the path to the directory holding the NeurOne measurement (i.e., the directory Proto-
col.xml and Session.xml files.

• sampling_rate: The sampling rate of the recording. This argument is optional and if not given, the
protocol is automatically read.

• session_phase: The phase of the measurement. Currently only reading of the first phase (1) is sup-
ported.

Returns:

• A dict containing the events and the data type for the events.

{“events” : <numpy structured array with the events>, “events_dtype” : <array with the numpy dtype for the
events>}

neurone_loader.neurone.read_neurone_protocol(fpath)
Read the measurement protocol from an XML file.

Arguments:

• fpath: the path to the directory holding the NeurOne measurement (i.e., the directory Proto-
col.xml and Session.xml files.

Returns:

• a dictionary containing (i) the names of the channels in the recording and (ii) meta information
(recording start/stop times, sampling rate).

{“meta” : <dict with metadata>, “channels” : <array with channel names>}

4.4 neurone_loader.lazy

4.4.1 Classes

neurone_loader.lazy.Lazy([fget, fset, fdel,
doc])

Return a lazy property attribute.

4.4. neurone_loader.lazy 21

NeuroneLoader Documentation, Release 1.0

4.4.2 Functions

neurone_loader.lazy.preloadable(cls) Use this as a decorator for a class that contains proper-
ties constructed with lazy.Lazy .

Provides the Lazy decorator to construct properties that are evaluated only once and the preloadable decorator to
enable optional preloading of all lazy properties on initialization.

class neurone_loader.lazy.Lazy(fget=None, fset=None, fdel=None, doc=None)
Return a lazy property attribute.

This decorator can be used exactly like the property function to turn a function into an attribute, the difference
being the following: A function decorated with property is evaluated every time the attribute is accessed.
A function decorated with lazy.Lazy is only evaluated once and the result is stored as a private attribute.
Subsequently the private attribute is returned when the property constructed with lazy.Lazy is accessed. The
lazy property can also be set manually or deleted, just like every other attribute. When the lazy attribute is
deleted and then accessed again, the property function is called again and the result stored as a private attribute.

Example

>>> class Test:
>>> @Lazy
>>> def lazy_attribute(self):
>>> print('lazy function called')
>>> return 'lazy return'
>>>
>>> @property
>>> def property_attribute(self):
>>> print('property function called')
>>> return 'property return'
>>>
>>> test_object = Test()
>>> print(test_object.property_attribute)
property function called
property return
>>> print(test_object.property_attribute) # A property function is evaluated on
→˓every call
property function called
property return
>>> print(test_object.lazy_attribute) # The lazy function is evaluated on first
→˓call
lazy function called
lazy return
>>> print(test_object.lazy_attribute) # but not on subsequent calls
lazy return
>>> del test_object.lazy_attribute # When deleted the attribute is reset and
→˓the
>>> print(test_object.lazy_attribute) # function is evaluated again on next call
lazy function called
lazy return

See also:

Decorate your class with the lazy.preloadable attribute to enable optional preloading of all lazy attributes
on initialization.

neurone_loader.lazy.preloadable(cls)
Use this as a decorator for a class that contains properties constructed with lazy.Lazy . A class decorated

22 Chapter 4. API

https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/functions.html#property

NeuroneLoader Documentation, Release 1.0

like this can be initialized with preload=True to call every lazy property once and store it’s return value.
Optionally the preload function can be used to do the same. It can also be used to reload all lazy properties
without deleting them first.

Example

>>> @preloadable
>>> class Test:
>>> @Lazy
>>> def lazy_attribute(self):
>>> print('lazy function called')
>>> return 'lazy return'
>>>
>>> test_object = Test(preload=True) # The lazy property is evaluated on
→˓initialization
lazy function called
>>> print(test_object.lazy_attribute) # The stored attribute is returned
lazy return
>>> del test_object.lazy_attribute # When deleted the attribute is reset and
→˓the
>>> print(test_object.lazy_attribute) # function is evaluated again on next call
lazy function called
lazy return
>>> test_object.preload() # All properties are reloaded even though already stored
lazy function called

neurone_loader.loader Provides classes to load, represent and export data
recorded with the Bittium NeurOne device.

neurone_loader.mne_export Provides the metaclass MneExportable that allows sub-
classes implementing all the metaclass’s properties to be
converted to a mne.io.RawArray.

neurone_loader.neurone Contains functions for reading data recorded with a Bit-
tium NeurOne device.

neurone_loader.lazy Provides the Lazy decorator to construct properties that
are evaluated only once and the preloadable decorator
to enable optional preloading of all lazy properties on
initialization.

4.4. neurone_loader.lazy 23

NeuroneLoader Documentation, Release 1.0

24 Chapter 4. API

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

25

NeuroneLoader Documentation, Release 1.0

26 Chapter 5. Indices and tables

Python Module Index

n
neurone_loader.lazy, 22
neurone_loader.loader, 13
neurone_loader.mne_export, 18
neurone_loader.neurone, 20

27

NeuroneLoader Documentation, Release 1.0

28 Python Module Index

Index

B
BaseContainer (class in neurone_loader.loader), 13

C
channels (neurone_loader.loader.BaseContainer at-

tribute), 14
channels (neurone_loader.loader.Recording attribute),

15
channels (neurone_loader.mne_export.MneExportable

attribute), 19
clear_data() (neurone_loader.loader.Phase

method), 14
clear_data() (neurone_loader.loader.Recording

method), 15
clear_data() (neurone_loader.loader.Session

method), 17
clear_data() (neu-

rone_loader.mne_export.MneExportable
method), 19

D
data (neurone_loader.loader.Phase attribute), 14
data (neurone_loader.loader.Recording attribute), 15
data (neurone_loader.loader.Session attribute), 17
data (neurone_loader.mne_export.MneExportable at-

tribute), 19
drop_channels() (neu-

rone_loader.loader.BaseContainer method),
14

drop_channels() (neurone_loader.loader.Phase
method), 14

drop_channels() (neurone_loader.loader.Recording
method), 16

drop_channels() (neurone_loader.loader.Session
method), 17

E
event_codes (neurone_loader.loader.Phase at-

tribute), 14

event_codes (neurone_loader.loader.Recording at-
tribute), 16

event_codes (neurone_loader.loader.Session at-
tribute), 17

events (neurone_loader.loader.Phase attribute), 14
events (neurone_loader.loader.Recording attribute), 16
events (neurone_loader.loader.Session attribute), 17
events (neurone_loader.mne_export.MneExportable

attribute), 19

G
get_n1_event_format() (in module neu-

rone_loader.neurone), 20

L
Lazy (class in neurone_loader.lazy), 22

M
MneExportable (class in neu-

rone_loader.mne_export), 18

N
n_channels (neurone_loader.loader.Phase attribute),

15
n_channels (neurone_loader.loader.Recording at-

tribute), 16
n_channels (neurone_loader.loader.Session attribute),

17
n_samples (neurone_loader.loader.Phase attribute),

15
n_samples (neurone_loader.loader.Recording at-

tribute), 16
n_samples (neurone_loader.loader.Session attribute),

18
neurone_loader.lazy (module), 22
neurone_loader.loader (module), 13
neurone_loader.mne_export (module), 18
neurone_loader.neurone (module), 20

29

NeuroneLoader Documentation, Release 1.0

P
Phase (class in neurone_loader.loader), 14
preload() (neurone_loader.loader.Phase method), 15
preload() (neurone_loader.loader.Recording

method), 16
preload() (neurone_loader.loader.Session method),

18
preloadable() (in module neurone_loader.lazy), 22

R
read_neurone_data() (in module neu-

rone_loader.neurone), 20
read_neurone_data_info() (in module neu-

rone_loader.neurone), 20
read_neurone_events() (in module neu-

rone_loader.neurone), 21
read_neurone_protocol() (in module neu-

rone_loader.neurone), 21
Recording (class in neurone_loader.loader), 15

S
sampling_rate (neu-

rone_loader.loader.BaseContainer attribute),
14

sampling_rate (neurone_loader.loader.Recording at-
tribute), 17

sampling_rate (neu-
rone_loader.mne_export.MneExportable
attribute), 19

Session (class in neurone_loader.loader), 17

T
to_mne() (neurone_loader.mne_export.MneExportable

method), 19

U
UnknownChannelException, 20

30 Index

	Installation
	Quick start
	Contributing
	API
	Indices and tables
	Python Module Index
	Index

